Stress modelling and prediction in presence of scarce data
نویسندگان
چکیده
OBJECTIVE Stress at work is a significant occupational health concern. Recent studies have used various sensing modalities to model stress behaviour based on non-obtrusive data obtained from smartphones. However, when the data for a subject is scarce it becomes a challenge to obtain a good model. METHODS We propose an approach based on a combination of techniques: semi-supervised learning, ensemble methods and transfer learning to build a model of a subject with scarce data. Our approach is based on the comparison of decision trees to select the closest subject for knowledge transfer. RESULTS We present a real-life, unconstrained study carried out with 30 employees within two organisations. The results show that using information (instances or model) from similar subjects can improve the accuracy of the subjects with scarce data. However, using transfer learning from dissimilar subjects can have a detrimental effect on the accuracy. Our proposed ensemble approach increased the accuracy by ≈10% to 71.58% compared to not using any transfer learning technique. CONCLUSIONS In contrast to high precision but highly obtrusive sensors, using smartphone sensors for measuring daily behaviours allowed us to quantify behaviour changes, relevant to occupational stress. Furthermore, we have shown that use of transfer learning to select data from close models is a useful approach to improve accuracy in presence of scarce data.
منابع مشابه
Numerical modelling of the underground roadways in coal mines– uncertainties caused by use of empirical-based downgrading methods and in situ stresses
Numerical modelling techniques are not new for mining industry and civil engineering projects anymore. These techniques have been widely used for rock engineering problems such as stability analysis and support design of roadways and tunnels, caving and subsidence prediction, and stability analysis of rock slopes. Despite the significant advancement in the computational mechanics and availabili...
متن کاملModelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network
In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...
متن کاملModelling of Stress-Strain Behaviour of Clayey Soils Using Artificial Neural Network
In this research, behaviour of clayey soils under triaxial loading is studied using Neural Network. The models have been prepared to predict the stress-strain behaviour of remolded clays under undrained condition. The advantage of the model developed is that simple parameters such as physical characteristics of soils like water content, fine content, Atterberg limits and so on, are used to mode...
متن کاملModelling Customer Attraction Prediction in Customer Relation Management using Decision Tree: A Data Mining Approach
In Today’s quality- based competitive world, known as knowledge age, customer attraction is of ultimate importance. In respect to the slogan “customer is always right”, customer relation management is the core of an organizational strategy playing an important role in four aspects of customer identification, customer attraction, customer retaining, and customer satisfaction. Commercial organiza...
متن کاملA Novel Type-2 Adaptive Neuro Fuzzy Inference System Classifier for Modelling Uncertainty in Prediction of Air Pollution Disaster (RESEARCH NOTE)
Type-2 fuzzy set theory is one of the most powerful tools for dealing with the uncertainty and imperfection in dynamic and complex environments. The applications of type-2 fuzzy sets and soft computing methods are rapidly emerging in the ecological fields such as air pollution and weather prediction. The air pollution problem is a major public health problem in many cities of the world. Predict...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomedical informatics
دوره 63 شماره
صفحات -
تاریخ انتشار 2016